The alkaloids trisphaerine, tazettine, hippeastrine, lycorine, and galanthamine were identified on the basis of their physicochemical properties and spectral characteristics and from the absence of a depression of the melting point of mixtures with authentic samples of reference alkaloids, and the alkaloid pancratine by a comparison of its properties and spectral characteristics with those given in the literature.

We are the first to have studied the Hymenocallis littoralis Salisb. of the flora of the Upper Volta and the Ivory Coast. Eight bases have been isolated: lycorine and tazettine, which have been obtained from this species previously and, for the first time, trisphaeridine, hippeastrine (trisphaerine), pancratine (hemanthidine), galanthamine, and bases (I) and (II).

LITERATURE CITED

- 1. Z. T. Artyushenko, Amaryllidaceae of the USSR [in Russian], Moscow (1970).
- 2. J. Berhaut, Flora du Sénégal, 2nd edn., Editions Clairafrique, Dakar (1967).
- 3. J. S. Glasby, Encyclopedia of the Alkaloids, Academic Press, New York, Vols. 1 and 2 (1975).
- 4. K. Gorter, Bull. Kard. Bot. Buitenzorg, 3, No. 1, 352 (1920); Chem. Zentr., III, 846 (1920).
- 5. J. Kerharo, Pharmacopée Traditionelle Sénégalaise, Paris (1974).
- 6. R. H. F. Manske, The Alkaloids. Chemistry and Physiology, Academic Press, New York, Vol. VI (1960), p. 295.
- 7. R. H. F. Manske, The Alkaloids, Chemistry and Physiology, Academic Press, New York, Vol. II (1952), p. 331.
- 8. W. C. Wildman and C. J. Kaufman, J. Am. Chem. Soc., J. Am. Chem. Soc., 76, 5815 (1954).
- 9. C. Yu. Yunusov, Alkaloids [in Russian], Tashkent (1974).

ALKALOIDS OF Aconitum saposhnikovii AND A. karacolicum

M. N. Sultankhodzhaev, M. S. Yumusov, and S. Yu. Yumusov

UDC 547.944/94

We have investigated shoots of *Aconitum saposhnikovii* B. Fedtsch., collected in the Dolon Pass (Kirghiz SSR).

The usual chloroform extraction yielded 0.54% of total alkaloids. Chromatography on a column of alumina led to the isolation of talatisamine [1, 2], isoboldine [3, 4], 14-acetyl-talatisamine [5, 6], and a new base with mp 128-130°C (ether) having the composition $C_{24}H_{37}NO_{5}$ (I). The NMR spectrum of the alkaloid had the signals of a N-ethyl group (3-proton triplet at 1.03 ppm) and of three methoxy groups (6-proton singlet at 3.21 ppm and three-proton singlet at 3.19 ppm). The mass spectrum was characterized by the peaks of the ions M^{+} 419 (23%), M-15 (18%), M-31 (100%), m/z 374 (15%) and m/z 372 (17%) and was similar to that of talatisamine (II).

A comparison of the molecular weights and functional compositions of the alkaloids, and also the presence in the IR spectrum of the absorption band of a carbonyl group in a five-membered ring at 1760 cm⁻¹ permitted the assumption that the alkaloid (I) was 14-dehydro-talatisamine. In actual fact, when talatisamine was oxidized with chromium trioxide, 14-dehydrotalatisamine was obtained [7] and proved to be identical with the base isolated according to the results of a mixed melting point test, IR spectra, and TLC. 14-Dehydrotalatisamine has not previously beem isolated from the plant.

When the separation of the combined alkaloids from the epigeal part of Aconitum kara-colicum Rapaics. collected in the upper reaches of R. Tyup (Kirghiz SSR) in the seed-ripening period was continued, in addition to aconitine, songorine, isoboldine, and napelline N-oxide [8], we isolated a new base with mp 235°C (acetone), having the composition $C_{24}H_{35}NO_{5}$ (III). Compound (III) dissolved readily in water and methanol and moderately well in chloroform.

Institute of the Chemistry of Plant Substances, Academy of Sciences of the Uzbek SSR, Tashkent. Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 265-266, March-April, 1982. Original article submitted December 27, 1981.

The NMR spectrum of (II) showed signals from a tertiary C-methyl group (0.80 ppm, 3 H, singlet), a N-ethyl group (1.37 ppm, 3 H, triplet), an acetoxy group (1.91 ppm, 3 H, singlet), and a terminal methylene group (4.86 and 5.11 ppm, broadened one-proton singlets), The IR spectrum had the absorption band of an ester carbonyl at 1730 cm⁻¹ and the mass spectrum a triplet of the peaks of the M⁺ -16, M⁺ -17, and M⁺ - 18 ions that is characteristic for alkaloid N-oxides. The empirical formula of (III) differed from that of 12-acetylnapelline [9] by the presence of an additional oxygen atom. These facts form evidence in favor of the assumption that the alkaloid isolated was 12-acetylnapelline N-oxide, and this was confirmed by the formation of 12-acetylnapelline when (III) was reduced with ferrous sulfate.

LITERATURE CITED

- 1. R. A. Konovalova and A. P. Orekhov, Zh. Obshch. Khim., 10, 745 (1940).
- 2. M. S. Yunusov and S. Yu. Yunusov, Khim. Prir. Soedin., 90 (1970).
- 3. L. D. Yakhontova, Khim. Prir. Soedin., 285 (1967).
- 4. H. Chikamatsu, M. Tomita, and M. Kotake, J. Chem. Soc. Jpn., 99, 647 (1979).
- 5. T. F. Platonova, A. D. Kozovkov, and P. S. Massagetov, Zh. Obshch. Khim., 28, 3126 (1958).
- 6. S. Sakai, H. Takayama, and T. Okomoto, J. Pharm. Soc. Jpn., 99, 647 (1979).
- 7. M. S. Yunusov, Ya. V. Rashkes, and S. Yu. Yunusov, Khim. Prir. Soedin., 626 (1971).
- 8. M. N. Sultankhodzhaev, L. V. Beshitaishvili, M. S. Yunusov, and S. Yu. Yunusov, Khim. Prir. Soedin., 826 (1979).
- 9. M. N. Sultankhodzhaev, L. V. Beshitaishvili, M. S. Yunusov, and S. Yu. Yunusov, Khim. Prir. Soedin., 681 (1976).